Reklama
Dołącz do liderów przyszłości i zdobądź przewagę! Sprawdź najnowszą ofertę subskrypcji
Dane i sztuczna inteligencja

Już w tym roku firma Elona Muska zacznie wszczepiać ludziom chipy

10 stycznia 2024 6 min czytania
Zdjęcie Paulina Kostro - Redaktor "MIT Sloan Management Review Polska"
Paulina Kostro
Już w tym roku firma Elona Muska zacznie wszczepiać ludziom chipy

Firma Neuralink Corp. Elona Muska planuje przeprowadzić pierwsze eksperymenty wszczepienia implantów do ludzkich mózgów.

Elon Musk i jego ambicje technologiczne są szeroko znane na całym świecie. Jednak ostatnie wiadomości dotyczące Neuralink Corp. zdają się przewyższać wszystko, co dotychczas zaprezentował ten ekstrawertyczny innowator. W 2024 roku firma ma zamiar przeprowadzić pierwsze eksperymenty związane ze wszczepianiem chipów w ludzkie mózgi.

Obecnie Neuralink poszukuje ochotników, którzy wezmą udział w pierwszych badaniach klinicznych. Osoby, które zdecydują się na ten eksperyment, wyrażą tym samym zgodę na usunięcie fragmentu swojej czaszki i zastąpienie jej minikomputerem podłączonym do mózgu. Będzie on odczytywał i analizował aktywność mózgu „nosiciela” i przekazywał zebrane informacje (bezprzewodowo) do pobliskiego komputera lub tabletu.

Robot wszczepi implant

Firma Neuralink podjęła decyzję o przeprowadzeniu badań klinicznych w pierwszej połowie 2023 roku. Jak czytamy na stronie firmy, badanie, określane mianem PRIME (Precise Robotically Implanted Brain‑Computer Interface), czyli „precyzyjnie robotycznie wszczepiany interfejs mózg‑maszyna” (BCI), ma na celu ocenę bezpieczeństwa implantu (N1) oraz robota chirurgicznego (R1), a także ocenę początkowej funkcjonalności BCI w celu umożliwienia osobom z paraliżem kontrolowania zewnętrznych urządzeń za pomocą myśli. Podczas eksperymentu robot R1 wykona operację chirurgiczną, podczas której umieści ultra cienkie, elastyczne nici implantu N1 w obszarze mózgu kontrolującym intencję ruchową. Jak zapewnia Neuralink: „Pierwotnym celem naszego BCI jest umożliwienie ludziom kontrolowania kursora komputera lub klawiatury wyłącznie za pomocą swoich myśli”.

Nie tylko Neuralink pracuje nad BCI

Nie można zaprzeczyć, że Neuralink stoi na czele technologicznych innowacji w dziedzinie BCI. Niemniej nie jest jedyną firmą działającą w tej branży. Warto wymienić chociażby Blackrock Neurotech (zobacz, jak pacjent BN tworzy obraz w programie Photoshop za pomocą BCI ), Synchron czy OpenBCI, które rozwijają różne podejścia do interfejsów mózg‑komputer.

To, co wyróżnia firmę Elona Muska, to fakt, że zamiast tradycyjnych (czyt. twardych) elektrod Neuralink proponuje elastyczne i cienkie przewody, które mają minimalizować uszkodzenia mózgu. Ponadto firma zamierza korzystać z zaawansowanych robotów do przeprowadzenia procedur wszczepienia, co ma przyspieszyć proces i zminimalizować ryzyko.

11 wszczepień w 2024 roku

Dotychczas Neuralink przeprowadził oficjalnie łącznie 449 operacji na owcach, świniach i małpach. Warto zaznaczyć, że w standardowym badaniu klinicznym pod nadzorem FDA firma miałaby możliwość przeprowadzenia tylko jednego eksperymentu na ludziach w ciągu pierwszego roku, z długim okresem oczekiwania na ocenę wyników. Jednakże, w kontekście Neuralink, dzięki ich wcześniejszym testom na zwierzętach oraz znaczącemu zainteresowaniu ze strony potencjalnych pacjentów, przedsiębiorstwo uzyskało akceptację na przeprowadzenie wielu zabiegów na ludziach już w 2024 roku.

Neuralink planuje przeprowadzić 11 wszczepień w 2024 roku, 27 w 2025 roku i 79 w 2026 roku. A jeśli do tego czasu wszystko przebiegnie zgodnie z planem firma przewiduje 499 operacji w 2027 roku, a następnie eksponencjalny wzrost w 2030 roku, kiedy deklaruje przeprowadzenie aż 22 240 operacji!

Zwykły eksperyment czy przełom naukowy

Neuralink do swojego badania poszukuje przede wszystkim pacjentów z paraplegią (utratą zdolności do ruchu/czucia w dolnych partiach ciała – przyp. red.) spowodowaną urazem rdzenia kręgowego lub stwardnieniem zanikowym bocznym (ALS). Idealnym kandydatem na ochotnika byłby dorosły poniżej 40 roku życia, który doświadcza paraliżu we wszystkich czterech kończynach.

Należy przy tym podkreślić, że wybór takiej grupy docelowej pacjentów może być interpretowany na różne sposoby. Z jednej strony, korzystanie z nowych technologii w celu pomocy tym, którzy naprawdę tego potrzebują, może być postrzegane jako altruistyczne dążenie do poprawy jakości życia. Z drugiej zaś taki wybór może również budzić obawy dotyczące etyki i bezpieczeństwa. Istnieje ryzyko, że osoby te mogą zostać potraktowane jak osoby poddawane eksperymentom medycznym bez odpowiedniego zrozumienia lub zgody.

Pacjent z prawem do prywatności

Choć perspektywa leczenia chorób neurologicznych za pomocą chipów brzmi fascynująco, nie można ignorować wyzwań związanych m.in. z prywatnością danych, możliwością nieautoryzowanego dostępu do umysłu, czy nawet potencjalnego uzależnienia od technologii. Tym bardziej że na stronie, w sekcji pytań i odpowiedzi, czytamy, że Neuralink zastrzega sobie prawo do przekazywania danych pacjentów podmiotom stowarzyszonym w Neuralink, stronom trzecim działającym w imieniu Neuralink oraz partnerom badawczym.

Kolejnym aspektem są dalsze fazy rozwoju tej technologii, bo w przyszłości być może nie będzie nawet konieczne wszczepianie implantów w ludzki mózg – wystarczy urządzenie dekodujące sygnały, które wytwarza. Zresztą całkiem niedawno zespół neuronaukowców z University of California w Berkley, pod kierunkiem dr. Ludovica Belliera, udowodnił, że istnieje sposób na zdalne odczytanie myśli (a dokładniej muzyki) z ludzkiego mózgu. Udało im się odkodować utwór „Another Brick in the Wall Part I”, którego słuchał pacjent. Szczegóły badania opisano w czasopiśmie PLOS Biology.

Nie ulega wątpliwości, że zarówno firma Elona Muska, jak i inne pracujące nad BCI, otwierają zupełnie nowe drzwi w erze medycyny i technologii. Jednak wraz z obietnicą, którą nam dają, pojawiają się poważne pytania i wyzwania. Dlatego warto, szczególnie jako eksperymentalny pacjent badań przeprowadzanych przez tego typu podmioty, podchodzić do tej technologii z (nomen omen) otwartą głową, ale i ostrożnością.

O autorach
Tematy

Może Cię zainteresować

• Jak generować wartość z AI dzięki małym transformacjom w biznesie - Webster
Premium
Jak generować wartość z AI dzięki małym transformacjom w biznesie

Liderzy skutecznie wykorzystują duże modele językowe, stopniowo minimalizując ryzyko i tworząc solidne fundamenty pod przyszłe transformacje technologiczne, dzięki czemu generują realną wartość dla swoich organizacji.

Niespełna dwa lata temu generatywna sztuczna inteligencja (GenAI) trafiła na czołówki stron gazet, zachwycając swoimi niezwykłymi możliwościami: mogła prowadzić rozmowy, analizować ogromne ilości tekstu, dźwięku i obrazów, a nawet tworzyć nowe dokumenty i dzieła sztuki. To najszybsze w historii wdrożenie technologii przyciągnęło ponad 100 mln użytkowników w ciągu pierwszych dwóch miesięcy, a firmy z różnych branż rozpoczęły eksperymenty z GenAI. Jednak pomimo dwóch lat intensywnego zainteresowania ze strony kierownictwa i licznych prób wdrożeniowych nie widać wielkoskalowych transformacji biznesowych, które początkowo przewidywano. Co się stało? Czy technologia nie spełniła oczekiwań? Czy eksperci się pomylili, wzywając do gigantycznych zmian? Czy firmy były zbyt ostrożne? Odpowiedź na te pytania brzmi: i tak, i nie. Generatywna sztuczna inteligencja już teraz jest wykorzystywana w wielu firmach, ale nie – jako lokomotywa radykalnej transformacji procesów biznesowych. Liderzy biznesu znajdują sposoby, by czerpać realną wartość z dużych modeli językowych (LLM), nie modyfikując całkowicie istniejących procesów. Dążą do małych zmian (small t) stanowiących fundament pod większe przekształcenia, które dopiero nadejdą. W tym artykule pokażemy, jak robią to dzisiaj i co możesz zrobić, aby tworzyć wartość za pomocą generatywnej sztucznej inteligencji.

Premium
Polski przemysł na rozdrożu

Stoimy przed fundamentalnym wyborem: albo dynamicznie przyspieszymy wdrażanie automatyzacji i robotyzacji, co sprawi, że staniemy się aktywnym uczestnikiem czwartej rewolucji przemysłowej, albo pogodzimy się z perspektywą erozji marż pod wpływem rosnących kosztów operacyjnych i pogłębiającego się strukturalnego niedoboru wykwalifikowanej siły roboczej.

Jak alarmują prognozy Polskiego Instytutu Ekonomicznego, do 2030 r. w samej Europie może zabraknąć nawet 2,1 mln wykwalifikowanych pracowników, co czyni automatyzację nie jedną z możliwości, lecz strategiczną koniecznością. Mimo że globalnie liczba robotów przemysłowych przekroczyła już 4,2 mln jednostek, a w Europie w 2023 r. wdrożono rekordowe 92,4 tys. nowych robotów, Polska wciąż pozostaje w tyle. Nasz wskaźnik gęstości robotyzacji, wynoszący zaledwie 78 robotów na 10 tys. pracowników przemysłowych, znacząco odbiega od europejskiego lidera – Niemiec (397 robotów na 10 tys. pracowników), czy globalnego pioniera – Korei Południowej (tysiąc robotów na 10 tys. pracowników). W Scanway – firmie, która z sukcesem łączy technologie rozwijane dla sektora kosmicznego z potrzebami przemysłu – jesteśmy przekonani, że przyszłość konkurencyjności leży w inteligentnym wykorzystaniu danych, zaawansowanej automatyzacji opartej na AI oraz strategicznej gotowości do wprowadzania zmian technologicznych. Czy jednak zaawansowana wizja maszynowa napędzana przez sztuczną inteligencję może się stać katalizatorem, który pozwoli sprostać wyzwaniom i odblokować uśpiony potencjał innowacyjny polskiej gospodarki?

Premium
Zamień konflikt we współpracę

Destrukcyjny konflikt w zespole zarządzającym może zahamować rozwój organizacji. Skuteczne zarządzanie takimi napięciami wymaga od liderów świadomego odejścia od rywalizacji o władzę na rzecz współpracy oraz strategicznego, systemowego myślenia.

Konflikt w zespole zarządzającym, szczególnie wtedy gdy przeradza się w trwały, emocjonalny antagonizm, staje się realnym zagrożeniem dla efektywności całej organizacji. Studium przypadku firmy X-Style.

Jak zapewnić stabilność i elastyczność na rynku zielonej energii?

Dynamiczne zmiany na rynku energii oraz rosnące znaczenie OZE i celów ESG stawiają przed firmami nowe wyzwania. W tym kontekście Reo.pl (Grupa Enerconet) kładzie nacisk na elastyczność, dogłębną analizę potrzeb klienta i transparentność danych. O strategiach budowania długoterminowych relacji i zapewniania przewidywalności w sektorze odnawialnym opowiada Grzegorz Tomasik, prezes Reo.pl. 

Reo.pl działa na polskim rynku od 2022 roku. Jakie wyzwania napotkali państwo przy wprowadzaniu elastyczności i dostosowywaniu się do dynamicznych zmian w sektorze OZE?

Chociaż marka Reo.pl powstała na początku 2022 r., nasza grupa – Enerconet – działa na rynku energetycznym już od 2007 r. Ta wieloletnia obecność w sektorze OZE i doświadczenie w obrocie energią dają nam status dojrzałego podmiotu, wspartego silnym zespołem i dogłębną znajomością branży.

Od 2007 r. sektor OZE przeszedł znaczącą transformację, obejmującą regulacje, mechanizmy rynkowe i podejście firm do zakupu zielonej energii. Kluczową zmianą był rozwój bezpośrednich kontraktów (P2P) między wytwórcami OZE a odbiorcami końcowymi. Spółki tworzące dziś Enerconet aktywnie uczestniczyły w tej ewolucji od samego początku, analizując rynek i wypracowując skuteczne rozwiązania, co ostatecznie doprowadziło do uruchomienia platformy Reo.pl.

Premium
Gdy projekt wymyka się spod kontroli

Polskie firmy technologiczne coraz częściej realizują złożone zlecenia dla międzynarodowych gigantów. Jednak nawet najlepiej przygotowany zespół może przy takim projekcie natknąć się na nieoczekiwane przeszkody. Przykład firmy Esysco wdrażającej szyfrowanie poczty e-mail dla jednego z największych niemieckich banków pokazuje, jak szybko może runąć precyzyjnie zaplanowany harmonogram oraz jak radzić sobie z nieprzewidywalnymi wyzwaniami.

Polskie firmy technologiczne coraz częściej zdobywają międzynarodowe kontrakty i realizują projekty, które jeszcze niedawno były zarezerwowane wyłącznie dla międzynarodowych rywali. Dzięki temu zdobywają zagraniczne rynki, osiągając imponujące wyniki eksportu usług IT, który w 2023 r. przekroczył 16 mld dolarów. W ostatniej dekadzie przychody branży wzrosły niemal czterokrotnie, a wartość eksportu – aż 7,5 razy, dzięki czemu polski sektor IT stał się motorem rodzimego eksportu. Kluczowymi kierunkami ekspansji są Stany Zjednoczone, Niemcy i Wielka Brytania, a wśród najsilniejszych obszarów znajdują się fintech, cyberbezpieczeństwo, sztuczna inteligencja, gry oraz rozwój oprogramowania.

Polska wyróżnia się w regionie Europy Środkowo-Wschodniej jako największy eksporter usług IT, przewyższając Czechy czy Węgry, a pod względem jakości specjalistów IT zajmuje trzecie miejsce na świecie. Jednak do pełnego wykorzystania tego potencjału konieczne jest pokonanie barier takich jak ograniczony dostęp do kapitału na ekspansję, rosnące koszty pracy oraz niedostateczne doświadczenie w międzynarodowej sprzedaży i marketingu. To jednak nie wszystko. Przy współpracy z międzynarodowymi gigantami trzeba również pamiętać o nieznanej polskim wdrożeniowcom skali, złożoności i nieprzewidywalności towarzyszącym tak wielkim projektom. Dobrym przykładem może być nasze wdrożenie dla jednego z największych niemieckich banków, z którym podpisaliśmy kontrakt na wprowadzenie systemu zabezpieczeń e-maili dla ponad 300 tys. użytkowników rozsianych po całym świecie. Technologicznie byliśmy gotowi, ale rzeczywistość szybko zweryfikowała nasze plany.

Premium
Praktyczny poradnik kreowania wartości z dużych modeli językowych

Gdy w 2022 r. pojawiły się powszechnie dostępne duże modele językowe (LLM), ich potężna zdolność do generowania tekstu na żądanie zapowiadała rewolucję w produktywności. Jednak mimo że te zaawansowane systemy AI potrafią tworzyć płynny tekst w języku naturalnym i komputerowym, to są one dalekie od doskonałości. Mogą halucynować, wykazywać się logiczną niespójnością oraz produkować treści nieadekwatne lub szkodliwe.

Chociaż technologia ta stała się powszechnie dostępna, wielu menedżerów nadal ma trudności z rozpoznawaniem przypadków użycia LLM-ów, w których poprawa produktywności przewyższa koszty i ryzyka związane z tymi narzędziami. Potrzebne jest bardziej systematyczne podejście do wykorzystywania modeli językowych, tak aby uefektywnić procesy biznesowe, a jednocześnie kontrolować słabe strony LLM-ów. Proponuję trzy kroki ułatwiające osiągnięcie tego celu. Po pierwsze, należy rozłożyć proces na mniejsze zadania. Po drugie, trzeba ocenić, czy każde zadanie spełnia tzw. równanie kosztów GenAI, które szczegółowo wyjaśnię w tym artykule. Jeśli ten warunek zostanie spełniony, należy uruchomić projekt pilotażowy, iteracyjnie oceniać jego wyniki oraz na bieżąco wprowadzać zmiany w celu poprawy rezultatów.

Kluczowe w tym podejściu jest pełne zrozumienie, w jaki sposób mocne i słabe strony modeli językowych odpowiadają specyfice danego zadania; jakie techniki umożliwiają ich skuteczną adaptację w celu zwiększenia wydajności; oraz jak te czynniki wpływają na bilans kosztów i korzyści – a także na ocenę ryzyka i potencjalnych zysków – związanych z wykorzystaniem modeli językowych do podnoszenia efektywności realizowanych działań.

Premium
Dlaczego odważne pomysły giną w szufladach menedżerów i co z tym zrobić?

Najbardziej innowacyjne, nietypowe idee często nie zostają zrealizowane – nie dlatego, że są złe, ale dlatego, że wywołują niepewność. Co może pomóc menedżerom w podejmowaniu ryzykownych, lecz potencjalnie przełomowych decyzji? Kluczowe okazuje się świadome budowanie sieci doradczej.

Menedżerowie, którzy są świadomi znaczenia innowacji w rozwoju organizacji, często zachęcają członków swoich zespołów do dzielenia się świeżymi i kreatywnymi pomysłami. Jednak wielu pracowników skarży się, że ich najlepsze propozycje są przez zwierzchników często pomijane, odrzucane lub niewłaściwie rozumiane.

Paradoksalnie to właśnie menedżerowie mogą stanowić jedną z największych barier dla innowacji. Mocno zakorzenieni we własnych obszarach specjalizacji, często nie dostrzegają wartości nowatorskich idei – szczególnie wtedy, gdy pomysły te wyznaczają nowe ścieżki w ich dziedzinie.

Technologia to zaledwie 5% sukcesu – pozostałe 95% to ludzie

W świecie, w którym digitalizacja stała się koniecznością, sukces zależy nie od samej technologii, lecz od umiejętności jej wykorzystania. O tym, jak multidyscyplinarne podejście, kobiece przywództwo i kultura oparta na bezpieczeństwie psychologicznym pozwoliły Archicom zbudować efektywny cyfrowy ekosystem, opowiada Agata Skowrońska-Domańska, wiceprezeska zarządu firmy.

AI dla wszystkich - Mechło
Premium
AI dla wszystkich: jak ją wdrożyć w firmie?

Sztuczna inteligencja nie jest już zarezerwowana wyłącznie dla dużych korporacji i technologicznych gigantów. Dziś każdy może korzystać z narzędzi opartych na AI, a bariera kosztów znacząco się obniżyła. To jednak nie znaczy, że korzystanie z tych technologii jest proste i zrozumiałe dla wszystkich.

Powszechna dostępność sztucznej inteligencji (AI) nie rozwiązuje kluczowego problemu: braku wiedzy o tym, jak skutecznie i odpowiedzialnie z niej korzystać. Dlatego edukacja staje się nie tylko wsparciem, ale wręcz warunkiem realnego wykorzystania potencjału tej technologii. Umiejętność pracy z AI powinna być dziś traktowana jak podstawowa kompetencja, niezbędna zarówno w życiu zawodowym, jak i codziennym. Tym bardziej, że generatywna sztuczna inteligencja (GenAI) coraz śmielej wkracza na polski rynek, oferując firmom wiele korzyści: począwszy od automatyzacji drobnych zadań aż po strategiczne przedsięwzięcia.

Premium
Jak zarządzać długiem technologicznym w erze AI

Sztuczna inteligencja rewolucjonizuje świat biznesu, ale jednocześnie przyczynia się do narastania długu technologicznego w firmach. Oto cztery kluczowe wskazówki dla liderów, które pomogą świadomie zarządzać kompromisami i stworzyć przestrzeń na innowacje.

Dług technologiczny działa jak kotwica, która spowalnia wysiłki liderów biznesu zmierzające do sprawnego zarządzania organizacją. Dodatkowa praca i nagromadzone koszty wynikające z doraźnych rozwiązań, nieaktualnych aplikacji i starzejącej się infrastruktury ograniczają zdolność firm do innowacji, konkurowania i długoterminowego rozwoju.

Pewien poziom długu technologicznego jest nieunikniony. Aby zachować elastyczność, przedsiębiorstwa często wdrażają nowe technologie w ekspresowym tempie, świadome, że w przyszłości będą musiały ponieść koszty modernizacji tych systemów. Ten kompromis staje się jednak coraz trudniejszy w miarę postępującej implementacji sztucznej inteligencji. Przy rocznych kosztach przekraczających 2,41 bln dolarów w samych tylko w Stanach Zjednoczonych, dług technologiczny nie jest już wyłącznie problemem IT – to realne obciążenie biznesowe, które wymaga uwagi na najwyższym szczeblu zarządzania.

Materiał dostępny tylko dla subskrybentów

Jeszcze nie masz subskrypcji? Dołącz do grona subskrybentów i korzystaj bez ograniczeń!

Subskrybuj

Newsletter

Otrzymuj najważniejsze artykuły biznesowe — zapisz się do newslettera!