Reklama
Dołącz do liderów przyszłości i zdobądź przewagę! Sprawdź najnowszą ofertę subskrypcji
Analityka i Business Intelligence
Magazyn (Nr 23, kwiecień - maj 2024)

Sztuczna inteligencja potrzebuje człowieka u steru

1 kwietnia 2024 5 min czytania
Zdjęcie Materiał Partnera Salesforce -
Materiał Partnera Salesforce
Sztuczna inteligencja potrzebuje człowieka u steru

Sztuczna inteligencja obiecuje, że wykonywanie zadań będzie łatwiejsze, praca – bardziej produktywna, a firmy – bardziej wydajne. Najnowsze badania przeprowadzone przez Slack wykazały, że 80% pracowników korzystających z generatywnych narzędzi AI doświadcza wzrostu produktywności – a to dopiero początek! Asystenci AI, tacy jak Salesforce Einstein Copilot, potrafią już odpowiadać na pytania, generować treści i dynamicznie automatyzować działania. Pewnego dnia asystenci AI staną się cyfrowymi agentami sprzedaży i usług. Będą przewidywać nasze potrzeby oraz działać w naszym imieniu.

TO WSZYSTKO BRZMI ŚWIETLANIE, jednak wraz z każdym postępem w dziedzinie sztucznej inteligencji pojawiają się nowe obawy natury etycznej. A co, jeśli asystent AI źle zarekomenduje produkt? A co, jeśli podejmie błędne działania w istotnych sprawach, takich jak finanse osobiste lub informacje medyczne? Wówczas stawka staje się bardzo wysoka. Pojawia się zatem niezwykle istotne pytanie: w jaki sposób możemy wykorzystać moc AI bez narażania się na ryzyko?

Człowiek u steru

Należy podkreślić, że AI sama w sobie ciągle ewoluuje. Każdego dnia wykonujemy krok naprzód, ale nie zawsze jesteśmy w stanie wyjaśnić, dlaczego sztuczna inteligencja robi to, co robi. Nie jesteśmy także w stanie wyeliminować każdej niedokładności, toksyczności lub dezinformacji. Dlatego, zdaniem Salesforce, sztuczna inteligencja zawsze powinna być nadzorowana i to ludzie muszą mieć pełną kontrolę nad systemami AI. Jednak w miarę jak sztuczna inteligencja staje się coraz bardziej wyrafinowana, może być coraz trudniej nadać jej ludzki charakter. Niewykonalne jest to, żebyśmy angażowali się w każdą interakcję ze sztuczną inteligencją nowej generacji lub przeglądali każdy wynik przez nią wygenerowany.

Dlatego właśnie sztuczna inteligencja potrzebuje człowieka u steru. Zamiast prosić ludzi o interwencję przy każdej indywidualnej interakcji człowieka z AI, projektujemy bardziej wydajne, ogólnosystemowe mechanizmy kontroli, które stawiają ludzi na czele wyników generowanych przez sztuczną inteligencję. Innymi słowy, ludzie nie zawsze wiosłują łodzią – ale w dużej mierze nią sterują i kontrolują, dokąd płynie.

Z człowiekiem u steru możemy projektować systemy AI, które wykorzystują to, co najlepsze w ludzkiej i sztucznej inteligencji. Na przykład możemy odblokować niesamowitą wydajność, zlecając AI przeglądanie oraz podsumowywanie milionów profilów klientów i jednocześnie budować zaufanie, umożliwiając ludziom pochylenie się nad wynikami i wykorzystanie ich w sposób, w jaki sztuczna inteligencja nie potrafi.

Sztuczna inteligencja jako drugi pilot, a nie autopilot

Nie bez powodu produkty AI tej generacji nazywane są copilotami, a nie autopilotami. W miarę jak sztuczna inteligencja staje się coraz potężniejsza i bardziej autonomiczna – podejmuje decyzje czy działania w imieniu jednostek – utrzymanie człowieka za sterami staje się jeszcze ważniejsze. Łącząc możliwości sztucznej inteligencji z siłą ludzkiego osądu, możemy sprawić, że AI będzie bardziej skuteczna i godna zaufania.

Przykłady na to, jak człowiek steruje AI:

Salesforce Prompt Builder: niezwykle istotne są pytania lub instrukcje, które kierujemy do generatywnych modeli AI. Pojedynczy wygenerowany przez człowieka monit może pomóc w uzyskaniu dokładnych wyników – ale tylko wtedy, gdy jest starannie skonstruowany. Dzięki narzędziu Prompt Builder pomagamy klientom tworzyć skuteczne instrukcje. Widzimy prawdopodobne wyniki w czasie zbliżonym do rzeczywistego. W ten sposób pomagamy uzyskać pożądany wynik. Różne tryby edycji w Prompt Builder pozwalają użytkownikom dostosowywać i poprawiać pytania tak, aby zapewniały bardziej pomocne, dokładne i trafne wyniki.

Ścieżki audytu pomagają wykryć to, co przeoczyliśmy: warstwa zaufania Einstein oferuje mocną ścieżkę audytu, która pomaga klientom ocenić historię pracy AI i wskazać, gdzie mógł zostać popełniony błąd – ale także gdzie sztuczna inteligencja dobrze sobie poradziła. Funkcje te ułatwiają zidentyfikowanie w dużych zbiorach danych problemów, które mogłyby nie zostać wyłapane przez człowieka. Dzięki temu można wykorzystać ludzki osąd do wprowadzenia poprawek na podstawie potrzeb organizacji. Na przykład Audit Trail może ostrzegać, gdy wyniki narzędzia AI są oznaczone jako „kciuk w dół” określoną liczbę razy – to sygnał, że wyniki generowane przez AI mogą nie spełniać oczekiwań biznesowych. Poprzez łączenie ukrytych sygnałów zwrotnych, takich jak częstotliwość edytowania danych wyjściowych przez użytkowników przed ich użyciem, Audit Trail może dać pełen wgląd w systemy i pozwolić zidentyfikować trendy oraz podjąć stosowne działania.

Pionierskie podejście do ery sztucznej inteligencji

W miarę rozwoju ery sztucznej inteligencji niezwykle ważne jest to, żeby ludzie i technologia ewoluowali razem. Rewolucja AI to nie tylko innowacje technologiczne. To także umożliwienie ludziom skutecznego zasiadania za sterami AI i wykorzystywania jej możliwości w sposób godny zaufania i skuteczny.

Dzięki umieszczeniu człowieka u steru możemy połączyć to, co najlepsze w ludzkiej i sztucznej inteligencji. Opierając się na możliwościach sztucznej inteligencji, można uwolnić potencjał ludzi do tego, w czym są najlepsi: kreatywności, dokonywania osądów i głębszego łączenia danych ze sobą. Dzięki współpracy AI i ludzi możemy stworzyć bardziej produktywne firmy, wzmacniać pracowników, a ostatecznie budować godną zaufania sztuczną inteligencję.

O autorach
Tematy

Może Cię zainteresować

Marki luksusowe pod presją geopolityki

W połowie kwietnia rynki kapitałowe zelektryzowała informacja o tym, że francuski gigant LVMH stracił tytuł najcenniejszej firmy luksusowej na świecie na rzecz mniejszego, ale bardziej ekskluzywnego Hermèsa. Czy detronizacja jednej francuskiej marki przez drugą (producenta torebek Louis Vuitton przez producenta torebek Birkin) to rzeczywiście zdarzenie, którym powinny się ekscytować europejskie rynki? I co ta zmiana oznacza dla polskich producentów marek premium?

 

Dobre relacje w firmie zaczynają się od dobrze dobranych słów

Gdy codzienna komunikacja sprowadza się do skrótów myślowych, domysłów i niejasnych sygnałów, łatwo o spadek zaangażowania, narastające napięcia i chaos informacyjny. Coraz więcej organizacji dostrzega, że to właśnie język – sposób, w jaki mówimy do siebie w pracy – buduje (lub rujnuje) atmosferę oraz relacje w zespołach. O tym, jak świadomie kształtować kulturę organizacyjną poprzez komunikację, opowiada Joanna Tracewicz, Senior Content Strategy Manager w rocketjobs.pl i justjoin.it, a także współautorka poradnika Nie mów do mnie ASAP! O spoko języku w pracy.  Rozmawia Paulina Chmiel-Antoniuk.

AI w medycynie predykcyjnej – jak wearables zmieniają opiekę Jak AI i urządzenia noszone rewolucjonizują medycynę

W ostatnich latach inteligentne urządzenia noszone (wearables) przeszły drogę od prostych krokomierzy do zaawansowanych narzędzi monitorujących stan zdrowia. Dzięki sztucznej inteligencji stają się one nie tylko rejestratorami danych, lecz także systemami predykcyjnymi, które mogą wspierać diagnostykę i profilaktykę chorób. W świecie biznesu i zarządzania zdrowiem pracowników technologia ta może odegrać kluczową rolę.
Według raportu Think Tank SGH wartość globalnego rynku AI w ochronie zdrowia wzrośnie z 32,3 miliarda dolarów w 2024 roku do 208,2 miliarda dolarów w 2030 roku, co oznacza średnioroczny wzrost na poziomie 36,4%. Ta dynamiczna ekspansja wskazuje na rosnące znaczenie technologii AI i wearables jako ważnych elementów nowoczesnej opieki medycznej.

Strategiczna samotność – klucz do autentycznego przywództwa

W dynamicznym współczesnym świecie biznesu, w którym dominują informacje dostarczane w trybie natychmiastowym, umiejętność samodzielnego, logicznego i krytycznego myślenia stała się jedną z najcenniejszych kompetencji liderów. Koncepcja ta, przedstawiona przez Williama Deresiewicza, byłego profesora Uniwersytetu Yale, zakłada, że prawdziwe przywództwo nie rodzi się wśród zgiełku opinii i impulsów zewnętrznych, lecz w przestrzeni samotności i skupienia.

Skup się na fanach marki. Oferta skierowana do wszystkich nie działa!
Multimedia
Skup się na fanach marki. Oferta do wszystkich nie działa!

W spolaryzowanej kulturze pogoń za rynkiem masowym i kierowanie oferty do wszystkich są z góry skazane na porażkę. Najlepszym sposobem na osiągnięcie sukcesu marki jest sprzymierzenie się z subkulturą, która ją pokocha.

Cła, przeceny i okazje: Jak zarobić, gdy inni panikują lub tweetują

Trump tweetuje, Wall Street reaguje nerwowo, a inwestorzy znów sprawdzają, czy gdzieś nie pozostawili Planu B. Gdy rynek wpada w histerię, pojawia się pokusa: a może jednak warto „kupić w tym dołku”? W tym tekście sprawdzamy, czy inwestowanie w kontrze do tłumu to genialna strategia na czasy ceł Trumpa, banów na Chiny i politycznych rollercoasterów — czy raczej przepis na ból głowy i portfela. Nie wystarczy chłodna kalkulacja, przyda się też stalowy żołądek.

• Jak generować wartość z AI dzięki małym transformacjom w biznesie - Webster
Premium
Jak generować wartość z AI dzięki małym transformacjom w biznesie

Liderzy skutecznie wykorzystują duże modele językowe, stopniowo minimalizując ryzyko i tworząc solidne fundamenty pod przyszłe transformacje technologiczne, dzięki czemu generują realną wartość dla swoich organizacji.

Niespełna dwa lata temu generatywna sztuczna inteligencja (GenAI) trafiła na czołówki stron gazet, zachwycając swoimi niezwykłymi możliwościami: mogła prowadzić rozmowy, analizować ogromne ilości tekstu, dźwięku i obrazów, a nawet tworzyć nowe dokumenty i dzieła sztuki. To najszybsze w historii wdrożenie technologii przyciągnęło ponad 100 mln użytkowników w ciągu pierwszych dwóch miesięcy, a firmy z różnych branż rozpoczęły eksperymenty z GenAI. Jednak pomimo dwóch lat intensywnego zainteresowania ze strony kierownictwa i licznych prób wdrożeniowych nie widać wielkoskalowych transformacji biznesowych, które początkowo przewidywano. Co się stało? Czy technologia nie spełniła oczekiwań? Czy eksperci się pomylili, wzywając do gigantycznych zmian? Czy firmy były zbyt ostrożne? Odpowiedź na te pytania brzmi: i tak, i nie. Generatywna sztuczna inteligencja już teraz jest wykorzystywana w wielu firmach, ale nie – jako lokomotywa radykalnej transformacji procesów biznesowych. Liderzy biznesu znajdują sposoby, by czerpać realną wartość z dużych modeli językowych (LLM), nie modyfikując całkowicie istniejących procesów. Dążą do małych zmian (small t) stanowiących fundament pod większe przekształcenia, które dopiero nadejdą. W tym artykule pokażemy, jak robią to dzisiaj i co możesz zrobić, aby tworzyć wartość za pomocą generatywnej sztucznej inteligencji.

Premium
Polski przemysł na rozdrożu

Stoimy przed fundamentalnym wyborem: albo dynamicznie przyspieszymy wdrażanie automatyzacji i robotyzacji, co sprawi, że staniemy się aktywnym uczestnikiem czwartej rewolucji przemysłowej, albo pogodzimy się z perspektywą erozji marż pod wpływem rosnących kosztów operacyjnych i pogłębiającego się strukturalnego niedoboru wykwalifikowanej siły roboczej.

Jak alarmują prognozy Polskiego Instytutu Ekonomicznego, do 2030 r. w samej Europie może zabraknąć nawet 2,1 mln wykwalifikowanych pracowników, co czyni automatyzację nie jedną z możliwości, lecz strategiczną koniecznością. Mimo że globalnie liczba robotów przemysłowych przekroczyła już 4,2 mln jednostek, a w Europie w 2023 r. wdrożono rekordowe 92,4 tys. nowych robotów, Polska wciąż pozostaje w tyle. Nasz wskaźnik gęstości robotyzacji, wynoszący zaledwie 78 robotów na 10 tys. pracowników przemysłowych, znacząco odbiega od europejskiego lidera – Niemiec (397 robotów na 10 tys. pracowników), czy globalnego pioniera – Korei Południowej (tysiąc robotów na 10 tys. pracowników). W Scanway – firmie, która z sukcesem łączy technologie rozwijane dla sektora kosmicznego z potrzebami przemysłu – jesteśmy przekonani, że przyszłość konkurencyjności leży w inteligentnym wykorzystaniu danych, zaawansowanej automatyzacji opartej na AI oraz strategicznej gotowości do wprowadzania zmian technologicznych. Czy jednak zaawansowana wizja maszynowa napędzana przez sztuczną inteligencję może się stać katalizatorem, który pozwoli sprostać wyzwaniom i odblokować uśpiony potencjał innowacyjny polskiej gospodarki?

Premium
Gdy projekt wymyka się spod kontroli

Polskie firmy technologiczne coraz częściej realizują złożone zlecenia dla międzynarodowych gigantów. Jednak nawet najlepiej przygotowany zespół może przy takim projekcie natknąć się na nieoczekiwane przeszkody. Przykład firmy Esysco wdrażającej szyfrowanie poczty e-mail dla jednego z największych niemieckich banków pokazuje, jak szybko może runąć precyzyjnie zaplanowany harmonogram oraz jak radzić sobie z nieprzewidywalnymi wyzwaniami.

Polskie firmy technologiczne coraz częściej zdobywają międzynarodowe kontrakty i realizują projekty, które jeszcze niedawno były zarezerwowane wyłącznie dla międzynarodowych rywali. Dzięki temu zdobywają zagraniczne rynki, osiągając imponujące wyniki eksportu usług IT, który w 2023 r. przekroczył 16 mld dolarów. W ostatniej dekadzie przychody branży wzrosły niemal czterokrotnie, a wartość eksportu – aż 7,5 razy, dzięki czemu polski sektor IT stał się motorem rodzimego eksportu. Kluczowymi kierunkami ekspansji są Stany Zjednoczone, Niemcy i Wielka Brytania, a wśród najsilniejszych obszarów znajdują się fintech, cyberbezpieczeństwo, sztuczna inteligencja, gry oraz rozwój oprogramowania.

Polska wyróżnia się w regionie Europy Środkowo-Wschodniej jako największy eksporter usług IT, przewyższając Czechy czy Węgry, a pod względem jakości specjalistów IT zajmuje trzecie miejsce na świecie. Jednak do pełnego wykorzystania tego potencjału konieczne jest pokonanie barier takich jak ograniczony dostęp do kapitału na ekspansję, rosnące koszty pracy oraz niedostateczne doświadczenie w międzynarodowej sprzedaży i marketingu. To jednak nie wszystko. Przy współpracy z międzynarodowymi gigantami trzeba również pamiętać o nieznanej polskim wdrożeniowcom skali, złożoności i nieprzewidywalności towarzyszącym tak wielkim projektom. Dobrym przykładem może być nasze wdrożenie dla jednego z największych niemieckich banków, z którym podpisaliśmy kontrakt na wprowadzenie systemu zabezpieczeń e-maili dla ponad 300 tys. użytkowników rozsianych po całym świecie. Technologicznie byliśmy gotowi, ale rzeczywistość szybko zweryfikowała nasze plany.

Premium
Praktyczny poradnik kreowania wartości z dużych modeli językowych

Gdy w 2022 r. pojawiły się powszechnie dostępne duże modele językowe (LLM), ich potężna zdolność do generowania tekstu na żądanie zapowiadała rewolucję w produktywności. Jednak mimo że te zaawansowane systemy AI potrafią tworzyć płynny tekst w języku naturalnym i komputerowym, to są one dalekie od doskonałości. Mogą halucynować, wykazywać się logiczną niespójnością oraz produkować treści nieadekwatne lub szkodliwe.

Chociaż technologia ta stała się powszechnie dostępna, wielu menedżerów nadal ma trudności z rozpoznawaniem przypadków użycia LLM-ów, w których poprawa produktywności przewyższa koszty i ryzyka związane z tymi narzędziami. Potrzebne jest bardziej systematyczne podejście do wykorzystywania modeli językowych, tak aby uefektywnić procesy biznesowe, a jednocześnie kontrolować słabe strony LLM-ów. Proponuję trzy kroki ułatwiające osiągnięcie tego celu. Po pierwsze, należy rozłożyć proces na mniejsze zadania. Po drugie, trzeba ocenić, czy każde zadanie spełnia tzw. równanie kosztów GenAI, które szczegółowo wyjaśnię w tym artykule. Jeśli ten warunek zostanie spełniony, należy uruchomić projekt pilotażowy, iteracyjnie oceniać jego wyniki oraz na bieżąco wprowadzać zmiany w celu poprawy rezultatów.

Kluczowe w tym podejściu jest pełne zrozumienie, w jaki sposób mocne i słabe strony modeli językowych odpowiadają specyfice danego zadania; jakie techniki umożliwiają ich skuteczną adaptację w celu zwiększenia wydajności; oraz jak te czynniki wpływają na bilans kosztów i korzyści – a także na ocenę ryzyka i potencjalnych zysków – związanych z wykorzystaniem modeli językowych do podnoszenia efektywności realizowanych działań.

Materiał dostępny tylko dla subskrybentów

Jeszcze nie masz subskrypcji? Dołącz do grona subskrybentów i korzystaj bez ograniczeń!

Subskrybuj

Newsletter

Otrzymuj najważniejsze artykuły biznesowe — zapisz się do newslettera!