Reklama
Dołącz do liderów przyszłości i zdobądź przewagę! Sprawdź najnowszą ofertę subskrypcji
Analityka i Business Intelligence

Black Friday i Cyber Monday – jak szybko zyskują na popularności?

28 listopada 2019 4 min czytania
Zdjęcie Tomasz Kulas - Redaktor "MIT Sloan Management Review Polska", redaktor prowadzący "ICAN Management Review"
Tomasz Kulas
Black Friday i Cyber Monday – jak szybko zyskują na popularności?

CZY WIESZ, ŻE: Cyber Monday może za kilka lat okazać się ważniejszy dla rynku e‑commerce niż Black Friday? Nie jest równie popularny, ale tego dnia możesz sprzedać… więcej.

Polski internet zaczął na serio zauważać zjawisko, jakim jest Black Friday, w listopadzie 2012 roku. Na pierwszy naprawdę wyraźny szczyt popularności w wyszukiwaniach trzeba było czekać jeszcze trzy lata, do listopada 2015. Od tego czasu popularność hasła Black Friday w polskiej sieci internetowej i polskim e‑commerce gwałtownie rośnie – o 40‑50% każdego roku. Wszystko wskazuje też na to, że w tym roku czarnopiątkowe szaleństwo po raz kolejny okaże się w Polsce rekordowo intensywne:

Skąd się wziął Black Friday?

Black Friday, czyli czarny piątek (stosujemy wyjątkowo określenie oryginalne, bo w ten sposób funkcjonuje ono w Polsce) to zjawisko, które pojawiło się na początku w Stanach Zjednoczonych. Obchodzony jest w pierwszy piątek po Święcie Dziękczynienia, a pochodzenie jego nazwy nie jest do końca pewne. Dwie najbardziej prawdopodobne hipotezy dotyczą… przedsiębiorców i policjantów. Przedsiębiorcy określili ten piątek jako czarny, ponieważ był to dla nich okres dużego niedoboru pracowników. Masowo zgłaszali oni w pracy problemy zdrowotne, aby przedłużyć sobie okres wypoczynku. Według innej teorii to policjanci określili ten piątek jako czarny ze względu na tłumy osób na ulicach i w sklepach, a zatem konieczność znacznie częstszych interwencji.

Ale to nie jedyne hipotezy. Są tacy, którzy łączą nazwę Black Friday z gwałtownym spadkiem kursu złota, a jeszcze inni wywodzą to określenie od koloru tuszu, którym zapisywane były wyniki sprzedaży w sklepach.

Jedno jest pewne. Black Friday to czas, w którym Amerykanów – i coraz częściej nie tylko ich – ogarnia masowe zakupowe szaleństwo. W 2017 roku wpływy sprzedawców w samych Stanach Zjednoczonych wyniosły tego dnia 5 miliardów dolarów. W 2018 roku było to już 6,2 miliarda dolarów, zaś przewidywania dotyczące czarnego piątku w roku obecnym mówią o 7,5 miliarda dolarów.

Black Friday na świecie

Co ciekawe, jeśli spojrzymy na trendy wyszukiwań tego hasła w sieci internetowej, to okaże się, że Amerykanie nie są pod tym względem najaktywniejsi. Wyprzedzają ich minimalnie mieszkańcy Republiki Południowej Afryki:

Jak łatwo też było przewidzieć, rozwój popularności zjawiska określanego mianem Black Friday w ujęciu globalnym zaczął się – w porównaniu z polskim kontekstem – zdecydowanie wcześniej. Już w 2004 roku Google rejestrował sporo zapytań związanych z tym terminem, zaś od 2015 roku ich liczba regularnie wzrasta:

Warto jednak zauważyć, że nie jest to tempo wzrostu dorównujące gwałtownej popularności tego zjawiska w polskiej sieci internetowej i e‑commerce – ok. 15‑25% rok do roku.

Black Friday czy Cyber Monday?

Cyber Monday, czyli cyfrowy poniedziałek, to zjawisko młodsze od czarnego piątku. I zdecydowanie mniej popularne. W skali globalnej częstość wyszukiwania obu haseł wygląda następująco:

Podobny trend – a raczej brak wyraźnego trendu wzrostu liczby wyszukiwań związanych z hasłem Cyber Monday – obserwujemy również w obszarze polskiej sieci internetowej. Wygląda więc na to, że cyfrowy poniedziałek, jako narzędzie do dodatkowego napędzenia cyfrowej sprzedaży, sam sprzedaje się raczej słabo…

Co ciekawe, na terenie Stanów Zjednoczonych skuteczność sprzedaży podczas Cyber Monday przewyższa wyniki uzyskiwane w Black Friday. Również w tym roku przewidywana suma przychodów sprzedawców w USA po cyfrowym poniedziałku wynieść ma 9,4 miliarda dolarów, wobec 7,5 miliarda po czarnym piątku. Jeśli również ten trend przeniesie się z poziomu Stanów Zjednoczonych na cały świat, to właśnie poniedziałek ma szansę stać się ulubionym dniem sprzedawców. Także w Polsce.

O autorach
Tematy

Może Cię zainteresować

• Jak generować wartość z AI dzięki małym transformacjom w biznesie - Webster
Premium
Jak generować wartość z AI dzięki małym transformacjom w biznesie

Liderzy skutecznie wykorzystują duże modele językowe, stopniowo minimalizując ryzyko i tworząc solidne fundamenty pod przyszłe transformacje technologiczne, dzięki czemu generują realną wartość dla swoich organizacji.

Niespełna dwa lata temu generatywna sztuczna inteligencja (GenAI) trafiła na czołówki stron gazet, zachwycając swoimi niezwykłymi możliwościami: mogła prowadzić rozmowy, analizować ogromne ilości tekstu, dźwięku i obrazów, a nawet tworzyć nowe dokumenty i dzieła sztuki. To najszybsze w historii wdrożenie technologii przyciągnęło ponad 100 mln użytkowników w ciągu pierwszych dwóch miesięcy, a firmy z różnych branż rozpoczęły eksperymenty z GenAI. Jednak pomimo dwóch lat intensywnego zainteresowania ze strony kierownictwa i licznych prób wdrożeniowych nie widać wielkoskalowych transformacji biznesowych, które początkowo przewidywano. Co się stało? Czy technologia nie spełniła oczekiwań? Czy eksperci się pomylili, wzywając do gigantycznych zmian? Czy firmy były zbyt ostrożne? Odpowiedź na te pytania brzmi: i tak, i nie. Generatywna sztuczna inteligencja już teraz jest wykorzystywana w wielu firmach, ale nie – jako lokomotywa radykalnej transformacji procesów biznesowych. Liderzy biznesu znajdują sposoby, by czerpać realną wartość z dużych modeli językowych (LLM), nie modyfikując całkowicie istniejących procesów. Dążą do małych zmian (small t) stanowiących fundament pod większe przekształcenia, które dopiero nadejdą. W tym artykule pokażemy, jak robią to dzisiaj i co możesz zrobić, aby tworzyć wartość za pomocą generatywnej sztucznej inteligencji.

Premium
Polski przemysł na rozdrożu

Stoimy przed fundamentalnym wyborem: albo dynamicznie przyspieszymy wdrażanie automatyzacji i robotyzacji, co sprawi, że staniemy się aktywnym uczestnikiem czwartej rewolucji przemysłowej, albo pogodzimy się z perspektywą erozji marż pod wpływem rosnących kosztów operacyjnych i pogłębiającego się strukturalnego niedoboru wykwalifikowanej siły roboczej.

Jak alarmują prognozy Polskiego Instytutu Ekonomicznego, do 2030 r. w samej Europie może zabraknąć nawet 2,1 mln wykwalifikowanych pracowników, co czyni automatyzację nie jedną z możliwości, lecz strategiczną koniecznością. Mimo że globalnie liczba robotów przemysłowych przekroczyła już 4,2 mln jednostek, a w Europie w 2023 r. wdrożono rekordowe 92,4 tys. nowych robotów, Polska wciąż pozostaje w tyle. Nasz wskaźnik gęstości robotyzacji, wynoszący zaledwie 78 robotów na 10 tys. pracowników przemysłowych, znacząco odbiega od europejskiego lidera – Niemiec (397 robotów na 10 tys. pracowników), czy globalnego pioniera – Korei Południowej (tysiąc robotów na 10 tys. pracowników). W Scanway – firmie, która z sukcesem łączy technologie rozwijane dla sektora kosmicznego z potrzebami przemysłu – jesteśmy przekonani, że przyszłość konkurencyjności leży w inteligentnym wykorzystaniu danych, zaawansowanej automatyzacji opartej na AI oraz strategicznej gotowości do wprowadzania zmian technologicznych. Czy jednak zaawansowana wizja maszynowa napędzana przez sztuczną inteligencję może się stać katalizatorem, który pozwoli sprostać wyzwaniom i odblokować uśpiony potencjał innowacyjny polskiej gospodarki?

Premium
Zamień konflikt we współpracę

Destrukcyjny konflikt w zespole zarządzającym może zahamować rozwój organizacji. Skuteczne zarządzanie takimi napięciami wymaga od liderów świadomego odejścia od rywalizacji o władzę na rzecz współpracy oraz strategicznego, systemowego myślenia.

Konflikt w zespole zarządzającym, szczególnie wtedy gdy przeradza się w trwały, emocjonalny antagonizm, staje się realnym zagrożeniem dla efektywności całej organizacji. Studium przypadku firmy X-Style.

Jak zapewnić stabilność i elastyczność na rynku zielonej energii?

Dynamiczne zmiany na rynku energii oraz rosnące znaczenie OZE i celów ESG stawiają przed firmami nowe wyzwania. W tym kontekście Reo.pl (Grupa Enerconet) kładzie nacisk na elastyczność, dogłębną analizę potrzeb klienta i transparentność danych. O strategiach budowania długoterminowych relacji i zapewniania przewidywalności w sektorze odnawialnym opowiada Grzegorz Tomasik, prezes Reo.pl. 

Reo.pl działa na polskim rynku od 2022 roku. Jakie wyzwania napotkali państwo przy wprowadzaniu elastyczności i dostosowywaniu się do dynamicznych zmian w sektorze OZE?

Chociaż marka Reo.pl powstała na początku 2022 r., nasza grupa – Enerconet – działa na rynku energetycznym już od 2007 r. Ta wieloletnia obecność w sektorze OZE i doświadczenie w obrocie energią dają nam status dojrzałego podmiotu, wspartego silnym zespołem i dogłębną znajomością branży.

Od 2007 r. sektor OZE przeszedł znaczącą transformację, obejmującą regulacje, mechanizmy rynkowe i podejście firm do zakupu zielonej energii. Kluczową zmianą był rozwój bezpośrednich kontraktów (P2P) między wytwórcami OZE a odbiorcami końcowymi. Spółki tworzące dziś Enerconet aktywnie uczestniczyły w tej ewolucji od samego początku, analizując rynek i wypracowując skuteczne rozwiązania, co ostatecznie doprowadziło do uruchomienia platformy Reo.pl.

Premium
Gdy projekt wymyka się spod kontroli

Polskie firmy technologiczne coraz częściej realizują złożone zlecenia dla międzynarodowych gigantów. Jednak nawet najlepiej przygotowany zespół może przy takim projekcie natknąć się na nieoczekiwane przeszkody. Przykład firmy Esysco wdrażającej szyfrowanie poczty e-mail dla jednego z największych niemieckich banków pokazuje, jak szybko może runąć precyzyjnie zaplanowany harmonogram oraz jak radzić sobie z nieprzewidywalnymi wyzwaniami.

Polskie firmy technologiczne coraz częściej zdobywają międzynarodowe kontrakty i realizują projekty, które jeszcze niedawno były zarezerwowane wyłącznie dla międzynarodowych rywali. Dzięki temu zdobywają zagraniczne rynki, osiągając imponujące wyniki eksportu usług IT, który w 2023 r. przekroczył 16 mld dolarów. W ostatniej dekadzie przychody branży wzrosły niemal czterokrotnie, a wartość eksportu – aż 7,5 razy, dzięki czemu polski sektor IT stał się motorem rodzimego eksportu. Kluczowymi kierunkami ekspansji są Stany Zjednoczone, Niemcy i Wielka Brytania, a wśród najsilniejszych obszarów znajdują się fintech, cyberbezpieczeństwo, sztuczna inteligencja, gry oraz rozwój oprogramowania.

Polska wyróżnia się w regionie Europy Środkowo-Wschodniej jako największy eksporter usług IT, przewyższając Czechy czy Węgry, a pod względem jakości specjalistów IT zajmuje trzecie miejsce na świecie. Jednak do pełnego wykorzystania tego potencjału konieczne jest pokonanie barier takich jak ograniczony dostęp do kapitału na ekspansję, rosnące koszty pracy oraz niedostateczne doświadczenie w międzynarodowej sprzedaży i marketingu. To jednak nie wszystko. Przy współpracy z międzynarodowymi gigantami trzeba również pamiętać o nieznanej polskim wdrożeniowcom skali, złożoności i nieprzewidywalności towarzyszącym tak wielkim projektom. Dobrym przykładem może być nasze wdrożenie dla jednego z największych niemieckich banków, z którym podpisaliśmy kontrakt na wprowadzenie systemu zabezpieczeń e-maili dla ponad 300 tys. użytkowników rozsianych po całym świecie. Technologicznie byliśmy gotowi, ale rzeczywistość szybko zweryfikowała nasze plany.

Premium
Praktyczny poradnik kreowania wartości z dużych modeli językowych

Gdy w 2022 r. pojawiły się powszechnie dostępne duże modele językowe (LLM), ich potężna zdolność do generowania tekstu na żądanie zapowiadała rewolucję w produktywności. Jednak mimo że te zaawansowane systemy AI potrafią tworzyć płynny tekst w języku naturalnym i komputerowym, to są one dalekie od doskonałości. Mogą halucynować, wykazywać się logiczną niespójnością oraz produkować treści nieadekwatne lub szkodliwe.

Chociaż technologia ta stała się powszechnie dostępna, wielu menedżerów nadal ma trudności z rozpoznawaniem przypadków użycia LLM-ów, w których poprawa produktywności przewyższa koszty i ryzyka związane z tymi narzędziami. Potrzebne jest bardziej systematyczne podejście do wykorzystywania modeli językowych, tak aby uefektywnić procesy biznesowe, a jednocześnie kontrolować słabe strony LLM-ów. Proponuję trzy kroki ułatwiające osiągnięcie tego celu. Po pierwsze, należy rozłożyć proces na mniejsze zadania. Po drugie, trzeba ocenić, czy każde zadanie spełnia tzw. równanie kosztów GenAI, które szczegółowo wyjaśnię w tym artykule. Jeśli ten warunek zostanie spełniony, należy uruchomić projekt pilotażowy, iteracyjnie oceniać jego wyniki oraz na bieżąco wprowadzać zmiany w celu poprawy rezultatów.

Kluczowe w tym podejściu jest pełne zrozumienie, w jaki sposób mocne i słabe strony modeli językowych odpowiadają specyfice danego zadania; jakie techniki umożliwiają ich skuteczną adaptację w celu zwiększenia wydajności; oraz jak te czynniki wpływają na bilans kosztów i korzyści – a także na ocenę ryzyka i potencjalnych zysków – związanych z wykorzystaniem modeli językowych do podnoszenia efektywności realizowanych działań.

Premium
Dlaczego odważne pomysły giną w szufladach menedżerów i co z tym zrobić?

Najbardziej innowacyjne, nietypowe idee często nie zostają zrealizowane – nie dlatego, że są złe, ale dlatego, że wywołują niepewność. Co może pomóc menedżerom w podejmowaniu ryzykownych, lecz potencjalnie przełomowych decyzji? Kluczowe okazuje się świadome budowanie sieci doradczej.

Menedżerowie, którzy są świadomi znaczenia innowacji w rozwoju organizacji, często zachęcają członków swoich zespołów do dzielenia się świeżymi i kreatywnymi pomysłami. Jednak wielu pracowników skarży się, że ich najlepsze propozycje są przez zwierzchników często pomijane, odrzucane lub niewłaściwie rozumiane.

Paradoksalnie to właśnie menedżerowie mogą stanowić jedną z największych barier dla innowacji. Mocno zakorzenieni we własnych obszarach specjalizacji, często nie dostrzegają wartości nowatorskich idei – szczególnie wtedy, gdy pomysły te wyznaczają nowe ścieżki w ich dziedzinie.

Technologia to zaledwie 5% sukcesu – pozostałe 95% to ludzie

W świecie, w którym digitalizacja stała się koniecznością, sukces zależy nie od samej technologii, lecz od umiejętności jej wykorzystania. O tym, jak multidyscyplinarne podejście, kobiece przywództwo i kultura oparta na bezpieczeństwie psychologicznym pozwoliły Archicom zbudować efektywny cyfrowy ekosystem, opowiada Agata Skowrońska-Domańska, wiceprezeska zarządu firmy.

AI dla wszystkich - Mechło
Premium
AI dla wszystkich: jak ją wdrożyć w firmie?

Sztuczna inteligencja nie jest już zarezerwowana wyłącznie dla dużych korporacji i technologicznych gigantów. Dziś każdy może korzystać z narzędzi opartych na AI, a bariera kosztów znacząco się obniżyła. To jednak nie znaczy, że korzystanie z tych technologii jest proste i zrozumiałe dla wszystkich.

Powszechna dostępność sztucznej inteligencji (AI) nie rozwiązuje kluczowego problemu: braku wiedzy o tym, jak skutecznie i odpowiedzialnie z niej korzystać. Dlatego edukacja staje się nie tylko wsparciem, ale wręcz warunkiem realnego wykorzystania potencjału tej technologii. Umiejętność pracy z AI powinna być dziś traktowana jak podstawowa kompetencja, niezbędna zarówno w życiu zawodowym, jak i codziennym. Tym bardziej, że generatywna sztuczna inteligencja (GenAI) coraz śmielej wkracza na polski rynek, oferując firmom wiele korzyści: począwszy od automatyzacji drobnych zadań aż po strategiczne przedsięwzięcia.

Premium
Jak zarządzać długiem technologicznym w erze AI

Sztuczna inteligencja rewolucjonizuje świat biznesu, ale jednocześnie przyczynia się do narastania długu technologicznego w firmach. Oto cztery kluczowe wskazówki dla liderów, które pomogą świadomie zarządzać kompromisami i stworzyć przestrzeń na innowacje.

Dług technologiczny działa jak kotwica, która spowalnia wysiłki liderów biznesu zmierzające do sprawnego zarządzania organizacją. Dodatkowa praca i nagromadzone koszty wynikające z doraźnych rozwiązań, nieaktualnych aplikacji i starzejącej się infrastruktury ograniczają zdolność firm do innowacji, konkurowania i długoterminowego rozwoju.

Pewien poziom długu technologicznego jest nieunikniony. Aby zachować elastyczność, przedsiębiorstwa często wdrażają nowe technologie w ekspresowym tempie, świadome, że w przyszłości będą musiały ponieść koszty modernizacji tych systemów. Ten kompromis staje się jednak coraz trudniejszy w miarę postępującej implementacji sztucznej inteligencji. Przy rocznych kosztach przekraczających 2,41 bln dolarów w samych tylko w Stanach Zjednoczonych, dług technologiczny nie jest już wyłącznie problemem IT – to realne obciążenie biznesowe, które wymaga uwagi na najwyższym szczeblu zarządzania.

Materiał dostępny tylko dla subskrybentów

Jeszcze nie masz subskrypcji? Dołącz do grona subskrybentów i korzystaj bez ograniczeń!

Subskrybuj

Newsletter

Otrzymuj najważniejsze artykuły biznesowe — zapisz się do newslettera!